p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.388C23, (C4×D8)⋊41C2, C8⋊2D4⋊6C2, C8⋊7D4⋊36C2, C8⋊4D4⋊19C2, C4⋊C4.248D4, D8⋊C4⋊14C2, C8.11(C4○D4), C2.25(D4○D8), C22⋊C4.88D4, C8.5Q8⋊18C2, C23.85(C2×D4), C4⋊C4.115C23, (C4×C8).224C22, (C2×C8).567C23, (C2×C4).374C24, (C2×D8).64C22, (C4×D4).95C22, C8○2M4(2)⋊18C2, C4.Q8.26C22, (C2×D4).129C23, C4⋊1D4.65C22, C4⋊D4.36C22, C8⋊C4.131C22, C2.D8.185C22, (C22×C8).303C22, C22.634(C22×D4), C42.C2.20C22, D4⋊C4.207C22, C22.34C24⋊3C2, (C22×C4).1054C23, C42.29C22⋊21C2, C42⋊C2.331C22, (C2×M4(2)).284C22, C2.71(C22.26C24), C4.59(C2×C4○D4), (C2×C4).146(C2×D4), SmallGroup(128,1908)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C42⋊C2 — C42.388C23 |
Generators and relations for C42.388C23
G = < a,b,c,d,e | a4=b4=c2=1, d2=b2, e2=cbc=b-1, ab=ba, ac=ca, dad-1=ab2, ae=ea, bd=db, be=eb, dcd-1=a2c, ece-1=b-1c, de=ed >
Subgroups: 428 in 193 conjugacy classes, 88 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C22×C4, C2×D4, C2×D4, C4×C8, C8⋊C4, D4⋊C4, C4.Q8, C2.D8, C42⋊C2, C4×D4, C4⋊D4, C4⋊D4, C22.D4, C42.C2, C4⋊1D4, C22×C8, C2×M4(2), C2×D8, C8○2M4(2), C4×D8, D8⋊C4, C8⋊7D4, C8⋊2D4, C42.29C22, C8⋊4D4, C8.5Q8, C22.34C24, C42.388C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, C22.26C24, D4○D8, C42.388C23
(1 35 27 10)(2 36 28 11)(3 37 29 12)(4 38 30 13)(5 39 31 14)(6 40 32 15)(7 33 25 16)(8 34 26 9)(17 58 45 54)(18 59 46 55)(19 60 47 56)(20 61 48 49)(21 62 41 50)(22 63 42 51)(23 64 43 52)(24 57 44 53)
(1 7 5 3)(2 8 6 4)(9 15 13 11)(10 16 14 12)(17 23 21 19)(18 24 22 20)(25 31 29 27)(26 32 30 28)(33 39 37 35)(34 40 38 36)(41 47 45 43)(42 48 46 44)(49 55 53 51)(50 56 54 52)(57 63 61 59)(58 64 62 60)
(1 42)(2 41)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 64)(10 63)(11 62)(12 61)(13 60)(14 59)(15 58)(16 57)(17 32)(18 31)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)(33 53)(34 52)(35 51)(36 50)(37 49)(38 56)(39 55)(40 54)
(1 51 5 55)(2 52 6 56)(3 53 7 49)(4 54 8 50)(9 45 13 41)(10 46 14 42)(11 47 15 43)(12 48 16 44)(17 38 21 34)(18 39 22 35)(19 40 23 36)(20 33 24 37)(25 61 29 57)(26 62 30 58)(27 63 31 59)(28 64 32 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,35,27,10)(2,36,28,11)(3,37,29,12)(4,38,30,13)(5,39,31,14)(6,40,32,15)(7,33,25,16)(8,34,26,9)(17,58,45,54)(18,59,46,55)(19,60,47,56)(20,61,48,49)(21,62,41,50)(22,63,42,51)(23,64,43,52)(24,57,44,53), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,63,61,59)(58,64,62,60), (1,42)(2,41)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)(33,53)(34,52)(35,51)(36,50)(37,49)(38,56)(39,55)(40,54), (1,51,5,55)(2,52,6,56)(3,53,7,49)(4,54,8,50)(9,45,13,41)(10,46,14,42)(11,47,15,43)(12,48,16,44)(17,38,21,34)(18,39,22,35)(19,40,23,36)(20,33,24,37)(25,61,29,57)(26,62,30,58)(27,63,31,59)(28,64,32,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,35,27,10)(2,36,28,11)(3,37,29,12)(4,38,30,13)(5,39,31,14)(6,40,32,15)(7,33,25,16)(8,34,26,9)(17,58,45,54)(18,59,46,55)(19,60,47,56)(20,61,48,49)(21,62,41,50)(22,63,42,51)(23,64,43,52)(24,57,44,53), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,63,61,59)(58,64,62,60), (1,42)(2,41)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)(33,53)(34,52)(35,51)(36,50)(37,49)(38,56)(39,55)(40,54), (1,51,5,55)(2,52,6,56)(3,53,7,49)(4,54,8,50)(9,45,13,41)(10,46,14,42)(11,47,15,43)(12,48,16,44)(17,38,21,34)(18,39,22,35)(19,40,23,36)(20,33,24,37)(25,61,29,57)(26,62,30,58)(27,63,31,59)(28,64,32,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,35,27,10),(2,36,28,11),(3,37,29,12),(4,38,30,13),(5,39,31,14),(6,40,32,15),(7,33,25,16),(8,34,26,9),(17,58,45,54),(18,59,46,55),(19,60,47,56),(20,61,48,49),(21,62,41,50),(22,63,42,51),(23,64,43,52),(24,57,44,53)], [(1,7,5,3),(2,8,6,4),(9,15,13,11),(10,16,14,12),(17,23,21,19),(18,24,22,20),(25,31,29,27),(26,32,30,28),(33,39,37,35),(34,40,38,36),(41,47,45,43),(42,48,46,44),(49,55,53,51),(50,56,54,52),(57,63,61,59),(58,64,62,60)], [(1,42),(2,41),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,64),(10,63),(11,62),(12,61),(13,60),(14,59),(15,58),(16,57),(17,32),(18,31),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25),(33,53),(34,52),(35,51),(36,50),(37,49),(38,56),(39,55),(40,54)], [(1,51,5,55),(2,52,6,56),(3,53,7,49),(4,54,8,50),(9,45,13,41),(10,46,14,42),(11,47,15,43),(12,48,16,44),(17,38,21,34),(18,39,22,35),(19,40,23,36),(20,33,24,37),(25,61,29,57),(26,62,30,58),(27,63,31,59),(28,64,32,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 8 | 8 | 8 | 8 | 2 | ··· | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D4○D8 |
kernel | C42.388C23 | C8○2M4(2) | C4×D8 | D8⋊C4 | C8⋊7D4 | C8⋊2D4 | C42.29C22 | C8⋊4D4 | C8.5Q8 | C22.34C24 | C22⋊C4 | C4⋊C4 | C8 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 8 | 4 |
Matrix representation of C42.388C23 ►in GL6(𝔽17)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 15 |
0 | 0 | 0 | 0 | 1 | 16 |
0 | 4 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 9 | 10 | 0 |
0 | 0 | 0 | 13 | 10 | 7 |
0 | 0 | 7 | 0 | 4 | 9 |
0 | 0 | 7 | 10 | 0 | 13 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 4 | 9 |
0 | 0 | 0 | 7 | 4 | 13 |
0 | 0 | 4 | 9 | 10 | 0 |
0 | 0 | 4 | 13 | 0 | 10 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 14 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
0 | 0 | 0 | 0 | 14 | 6 |
G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,15,16,0,0,0,0,0,0,1,1,0,0,0,0,15,16],[0,13,0,0,0,0,4,0,0,0,0,0,0,0,4,0,7,7,0,0,9,13,0,10,0,0,10,10,4,0,0,0,0,7,9,13],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,7,0,4,4,0,0,0,7,9,13,0,0,4,4,10,0,0,0,9,13,0,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,14,0,0,0,0,6,6,0,0,0,0,0,0,0,14,0,0,0,0,6,6] >;
C42.388C23 in GAP, Magma, Sage, TeX
C_4^2._{388}C_2^3
% in TeX
G:=Group("C4^2.388C2^3");
// GroupNames label
G:=SmallGroup(128,1908);
// by ID
G=gap.SmallGroup(128,1908);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,520,1018,80,4037,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=1,d^2=b^2,e^2=c*b*c=b^-1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,a*e=e*a,b*d=d*b,b*e=e*b,d*c*d^-1=a^2*c,e*c*e^-1=b^-1*c,d*e=e*d>;
// generators/relations